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Abstract I. Introduction

A Cartesian, cell-based approach for adaptively-refined
solutions of the Euler and Navier-Stokes equations in two

dimensions is developed and tested. Grids about geometri-

cally complicated bodies are generated automatically, by
recursive subdivision of a single Cartesian cell encom-

passing the entire flow domain. Where the resulting cells

intersect bodies, N-sided "cut" cells are created using

polygon-clipping algorithms. The grid is stored in a
binary-tree data structure which provides a natural means

of obtaining cell-to-cell connectivity and of carrying out
solution-adaptive mesh refinement. The Euler and Navier-

Stokes equations are solved on the resulting grids using a
finite-volume formulation. The convective terms are

upwinded: A gradient-limited, linear reconstruction of the

primitive variables is performed, providing input states to
an approximate Riemann solver for computing the fluxes

between neighboring cells. The more robust of a series of

viscous flux functions is used to provide the viscous fluxes

at the cell interfaces. Adaptively-refined solutions of the

Navier-Stokes equations using the Cartesian, cell-based

approach are obtained and compared to theory, experiment
and other accepted computational results for a series of

low and moderate Reynolds number flows.
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For complicated geometries, unstructured grids can be

easier to generate than structured grids, which is directly

responsible for their increasing popularity. Traditionally

unstructured grids, with volume grids comprised of trian-
gles in two-dimensions and tetrahedra in three-dimen-

sions, are typically generated by first discretizing the

bounding surfaces and then filling the volume grid by, say,

an advancing front method, or, by triangulating a cloud of

points. Both approaches are based upon a user specified
surface discretization which is closely coupled to the vol-

ume grid generation by requiring the specified faces on the

boundary surfaces to be faces of cells in the volume grid.

In the approach considered here, the volume grid and sur-

face description are not strongly coupled in this manner.

The computational boundaries are described functionally,

and are "cut" out of the automatically generated, Carte-

sian-cell based volume grid, yielding N-sided ceils near

the boundaries. This yields a computational grid com-

prised mostly of square, unit aspect ratio (Cartesian) con-

servation volumes with polygonal boundary cells. The

ability to automatically create the volume grid and the cut,

boundary cells gives the Cartesian-cell approach its utility,

but adds some complexity to the numerics and resulting

computer code. Since the cell geometry and hence the cell-

to-cell connectivity for all ceils is not known apriori, a
unique data structure is needed to describe the conserva-

tion volumes. Indee.d, it is this complication that sets the

Cartesian-cell based approach apart from most of the tradi-

tional unstructured grid approaches that are becoming

more and more prevalent today.

The Cartesian, cell-based approach has been used for solv-

ing a variety of problems, and variants of the approach
have proven to be quite useful for computing both



unsteady [6,7,26,27,5,10,25]and steady
[11,8,9,16,15,19,22]adaptively-refinedsolutionsto the
Eulerequationsandfor solutionsto thetransonicfull
potentialequation[33].Recently,theusefulnessof the
automatedgriddingandadaptivemeshrefinementcapa-
bilitiesof thesolverhavebeendemonstratedforadap-
tively-refinedsolutionsof theEulerequationsabout
largeaircraftconfigurations[23].Theautomatedmesh
generationcombinedwiththeadaptive-meshrefinement
capabilityofthisapproachoffersthepotentialofobtain-
ingaccuratesolutionswithminimaluserintervention.
Theworkshownhereinvestigatestheextensionof this
capabilityto solvingthecompressibleNavier-Stokes
equationsinanupwinded,finite-volumeframework.

II. Grid Generation Procedure

The grid is generated by the recursive subdivision of a

single cell, and during the creation of the grid, the hier-
archical relation between newly created cells and their

parents are stored in a binary tree data structure. The cut

cells, which are the background Cartesian cells cut into

polygons, are created automatically using many con-

cepts borrowed from computer graphics applications°
Since they are hierarchically related to their Cartesian

parents, they are also stored in the tree. This procedure
of cell cutting is a subject unto itself and its robustness

is absolutely crucial for the utility of this approach. The

cell cutting methodology used here is based upon a

polygon clipping algorithm [31], where a subject poly-

gon (the body of interest) is "clipped" against a convex
clipping polygon, which for this case is the Cartesian

cell. The subject polygon can be formulated to include

arbitrary functional descriptions of the bounding faces
(i.e.-geometric description), which is used here. This

particular clipping operation yields the logical and oper-

ation between the clipping polygon and the subject
polygon. This operation will yield the correct cells when

the subject polygon describes the outer boundary of a

flow domain, but needs to be modified slightly when the

subject polygon describes an inner boundary. When this

is the case, the region needed is recovered from the clip-

ping operation using a list directed vertex insertion pro-

cedure. Details behind the grid generation are presented

in more detail in [12]. Once a suitable geometric

description of the computational boundaries is made, the

grid generation is automatic, and since the procedure is

recursive and tree based, it is also efficient. An example

of the grid generation is shown in Figure 1, where a

coarse, base grid in a flow passage representative of the
cooling passage within a turbine blade is shown. The

geometry corresponds to that in [29], and is a projection
onto the x-y plane of the geometry located along a

curved surface about the turbine blade mean chord line.

The grid contains 2640 cells and was generated in 218
seconds on an IBM RS6000 Model 560 workstation.

The geometry definition is made using a linearly repre-

sented continuous outer boundary and 14 cooling fins.

Figure 1 Representative Turbine
Cooling Passage Grid

The use of this particular grid and data structure easily
allows adaptive mesh refinement, and away from bodies

yields smooth grids. The binary tree data structure pro-

vides a logical means of finding cell-to-cell connectivity

by logic based tree traversals and allows a straightfor-

ward means to perform mesh refinement and coarsening

via tree branch growth and pruning. There are many

niceties afforded by this data structure and grid setup°
The grid hierarchy is amenable to multi-grid [17] and

provides a natural means of domain decomposition that

appears well suited for coarse grain parallel computa-
tions.

III. Solution of the Euler

Equations Using a Cartesian-

Cell Based Approach

The Euler equations are solved using a cell-centered_

finite-volume, upwinding approach. A limited, linear

reconstruction of cell-averaged data is used to provide

input to a numerical flux function, yielding the flux



throughcell-to-cellinterfaces.The numerical fluxes are

computed in an upwind fashion using an appropriate
approximate Riemann solver. These fluxes are then used

to perform a flux balance upon the conservation volume,
which is then used to advance the conserved variables in

time. The procedure follows standard practice for a

finite-volume scheme. The solution procedure can be

broken up into 3 stages; reconstruction, flux construc-

tion and then evolution to steady-state. A more detailed

description of the procedures is shown in [12].

The variation of the cell primitive variables in each cell

is reconstructed using a linear reconstruction procedure,
in the spirit of MUSCL interpolation, based on the Min-

imum-Energy reconstruction presented by Barth [3].

The Minimum-Energy reconstruction minimizes the
Frobenius norm of the differences between the cell aver-

ages of the reconstructing polynomial and the cell aver-

ages of the support set. This reconstruction procedure is
K-exact, in the sense that if a linear function is cell aver-

aged upon the mesh, the reconstructed polynomial
returns the same, exact, linear function. The Minimum-

Energy reconstruction procedure provides the frame-

work of extending the order of reconstruction, but only a
linear reconstruction is considered here.

This reconstruction of cell averaged data does not pre-
clude the introduction of new extrema: There is no

means to ensure that the reconstructed solution is

bounded by the data used to perform the reconstruction.

To enforce this, the reconstruction is limited by evaluat-
mg the cell averaged data of the support cells used,

reducing the reconstructed gradient to achieve monoto-

nicity of the data. This will in turn guarantee monotonic-
ity of the solution if the numerical flux function is a

positivity preserving function (which for an upwind
scheme is sufficiently implied by positivity of the dissi-

pation matrix), and provided that a proper choice is

made for the time step. The concept of restricting the

local solution to be bounded by its immediate neighbors

is based upon a discrete interpretation of a local maxi-
mum principle, and has been used to evaluate the sten-

cils obtained for a model equation of the viscous terms

of the Navier-Stokes equations, in [12]. The limiting

procedure implemented here is based upon the proce-
dure shown by Barth and Jespersen [4]. To ensure

monotonicity of the reconstruction at cell interfaces, the

solution is required to be bounded by the data used to

perform the reconstruction. A single limiter,

¢b = min (#p.) is found for all the primitive variables• J
and apphed to the reconstructions.

The inviscid numerical fluxes may be computed using a

variety of approximate Riemann solvers: It is a simple

matter to supply a different numerical flux function by
replacing the approximate Riemann solver in the flow

solver. For the work shown here, most of the computa-
tions have been performed using the AUSM scheme of
Liou and Steffen [21]. This novel flux function com-

bines the efficiency of flux vector splitting with the
accuracy of flux difference splitting. The derivation and

use of this flux function is available in [21].

For simplicity, the semi-discrete form of the equations

are advanced in time using a multi-stage scheme. A spa-

tially varying time step is used, and is indeed quite nec-

essary, since there is typically a many order variation in
cell size across the mesh due to celI refinement and cut-

ring. A generic multi-stage scheme is used to advance

the solution from the n-th to the (n+l)-th time level.

III.a Solution Adaptive Mesh

Refinement

The Cartesian, cell-based approach gains its strength

primarily from two features; the ability to compute
flows about complicated geometries where the initial

grid is obtained automatically, and by the inherent ease

in which adaptive mesh refinement can be performed.

Adaptive mesh refinement is an attempt to improve the
quality of a solution by adding cells locally where an

increased resolution is desired, and by possibly remov-

ing cells where the current resolution is unnecessarily

too high. This feature, coupled with the automated

means of mesh generation, attempts to yield grid con-

verged solutions about geometrically complicated
domains with minimal user intervention.

Each level of adaptive mesh refinement is comprised of
two stages. In the first stage, refinement criteria are con-
structed for all cells on the mesh, and then in the second

stage, cells are tagged for refinement or coarsening
based on this criteria. After the mesh is enriched, a new

calculation is made, converging the solution to a steady,

and hopefully more accurate solution. This process of
refining the grid and converging the solution on the new

grid is repeated in an automated fashion, a set number of
times, until a given level of refinement is achieved.

The refinement criteria and grading procedure used here

are based upon that presented in [14,15]. Unless other-

wise noted, no changes to the form of the refinement cri-

teria or the selection levels are made. The procedure of

refinement and coarsening of the cells is based upon a

statistical description of the cell size weighted velocity

divergence and curl. The local velocity divergence is

used to detect compressive phenomena, while the veloc-

ity curl is used to detect shear. Each of these is weighted
by the local cell size so that smaller cells contribute less

to the overall weighting, as suggested in [32].
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III.b Validation of the Euler Solver

The Cartesian, cell-based approach has been demon-

strated extensively for a wide variety of inviscid flows

[11,8,9,16,15,19,22,23] and has been assessed for accu-

racy [13]. In [13] the approach was shown to compute

transonic flows with a global second-order accuracy and

a local accuracy between first- and second-order. The

adaptively refined solutions about a transonic single-

component airfoil and a sub-critical, multi-component

airfoil are shown here, demonstrating the adaptive-mesh

and mesh generation capability.

III.c AGARD Case 06: Transonic

Flow Past a RAE 2822 Airfoil

This case corresponds to the same geometry and free-
stream conditions as Test Case 06 in the collection of

inviscid flow test cases[l]. Adaptive mesh refinement is

performed for four levels beyond the base grid level.

Figure 2 shows the final, adapted grid and Figure 3
shows the Mach number contours at the final refinement
level°

/

Figure 3 RAE 2822 Level 4 Adapted
Mach Number Contours

2.00

1.75

1.50

1,25

M 1.00

0.75

0.50
<
c

0.25 c

0.00
0.0

. , • , • , • , • , • , • , . , • , •

I o Agard Data[-- AMR Level 4_

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x/C

Figure 4 Comparison to Computed
Surface Mach Numbers from

AGARD 211

Figure 2 RAE 2822 Level 4 Adapted Grid

The solution compares well with the computed results,

tabulated in [1]. Figure 4 shows the computed surface

Mach number and the computed results from [1].

III.d Suddhoo-Hall Multi-Element

Airfoil

This four-element airfoil has been included in a series of

test cases at the 1994, ICASE/NASA LaRC Workshop

on Adaptive Grid Methods. The geometry corresponds

to that obtained by a conformal mapping technique

[30], which has also yielded surface pressure data. The

airfoil geometry has been curve fit using a cubic spline

and made available on Mosaic (http://wwwoicase.edu/

workshops/adapt) by the workshop organizers. The free°

stream conditions corresponding to this case are



M._ = 0.2 and _ = 0 °. The mesh is generated auto-

matically and adaptive-mesh refinement performed for 3

levels beyond the base grid. The computed solution on

the final grid is compared to the potential flow solution

in Figure 5 while the final grid and pressure contours

are shown in Figure 6 and Figure 7.
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IV. Viscous Flux Formulation

The essence of the cell-centered viscous flux formula-

tion is the reconstruction of the gradients of the velocity
and temperature at the cell interfaces from the cell-aver-

aged data of the cells around it. Once this has been com-

pleted, a numerical quadrature is performed over the cell'

faces, yielding the desired viscous fluxes through the

interfaces. For cell-centered schemes, there are preva-

lently two separate classes of the viscous gradient
reconstructions, which have been analyzed in [12]. The

first and most widely used class is based upon an appli-
cation of the divergence theorem to a co-volume sur-

rounding the face where the flux is desired. These types

of reconstructions are classified as Green-Gauss type

reconstructions. Four of these types have been analyzed

in [12], and are delineated amongst themselves by the
reconstruction co-volumes and the procedures used to
obtain the data at the vertices of the co-volumes. A dif-

ferent class of gradient reconstructions based upon

expanding a polynomial about the face midpoint and

then differentiating the polynomial to obtain the gradi-
ents has been proposed by Mitchell [24]. Linear and

quadratic reconstructing polynomials are found using a
Lagrangian type of interpolation, and are also examined
in detail in [12].

There, the six schemes were analyzed for quality and

positivity by local Taylor-series expansions of the sten-

cils created for Laplace's equation on grids representa-
tive of the Cartesian approach. It was shown the



importanceof the K-exactness of the interface gradient

reconstructions. The analysis showed that for arbitrarily
distorted grids, the only means to obtain a conservative,

first-order accurate discretization requires that the gradi-

ents be found from quadratically-preserving functions.

Importantly, it was shown that if the gradient recon-

struction procedure is not at least linearity-preserving,

stencils can be obtained that preclude grid convergence,
and will actually have an error that increases with mesh

refinement. This type of truncation error is termed here

as being mesh divergent. Very importantly, robustness

of all of the schemes upon the distorted meshes caused

by mesh refinement was gauged using a positivity anal-
ysis. Non-positivity of a reconstruction scheme can

inhibit convergence and violates the discrete interpreta-

tion of the continuous maximum principle entertained
by elliptic solutions.

To summarize the analytical results presented in [12], of

the four Green-Gauss type reconstructions analyzed,

three were shown to be either mesh divergent, produced

either extremely non-positive stencils or gave solutions
that on certain topologies yielded stencils that were

completely or partially decoupled from the neighboring

cells. The fourth reconstruction type is commonly

known as a diamond-path reconstruction using a linear-
ity-preserving weighting. This reconstruction is named

so because it uses a diamond-shaped polygon to perform
the gradient reconstruction. The four vertices of this

polygon are formed by the two cell centroids that share
the face to be reconstructed about, and the two vertices

that are at the face endpoints. The data at the centroids is
known exactly, but the data at the vertices must be

arrived at by some interpolating procedure. In [20] a lin-

earity-preserving weighting is derived which finds data
at a vertex using the local cells about it. Since the

Green-Gauss reconstruction procedure can only preo

serve linear functions, and can only do this if the data

supplied to it is linearity-preserving, this weighting pro-

cedure guarantees the reconstruction of a gradient that is

linearly K-exact. A means of obtaining higher-order

preserving weightings was shown in [12], but for the

linearity-preserving reconstruction scheme using the

divergence integral, this higher-order weighting is
unnecessary. Although the analysis showed that this

reconstruction procedure was not positive on general
meshes and could yield inconsistent stencils, it was seen

to represent the better of the Green-Gauss class of
reconstructions.

Of the polynomial reconstruction types, a Lagrangian
type of interpolation procedure is used to reconstruct a

polynomial based at the face midpoint, which is then
differentiated to obtain the gradients. The reconstruction

requires the selection of either three cells (for the linear

reconstruction) or six cells (for the quadratic), which

then necessitates the inversion of a Vandermonde-type
matrix. In [24] it is suggested to base the selection of

these support cells to provide a centroid of the resulting

polygon to be closest to the face midpoint. In [12] it was

shown that this criterion does not always yield the best

stencil, and for the linear reconstruction scheme, yielded

some extremely poor stencils on certain grid topologies.
The analysis showed that the quadratic reconstruction

was the only procedure that gave first-order accurate

stencils for Laplace's equation on arbitrarily distorted

meshes. The analysis also indicated that this procedure
could give the most non-positive stencils.

Since the analysis presented no clear choice as to the

best procedure of the two classes of reconstructions,

Green-Gauss or polynomial based, the two schemes

were both used to compute a series of low to moderate

Reynolds number, adaptively-refined solutions using the

Cartesian approach. Although neither scheme guaran-
teed positive stencils, the diamond-path scheme could

be viewed as representing the more positive, yet less

accurate of the two. In [12], a discrete accuracy and pos-
itivity analysis on the grids showed that the inconsis-

tency incurred by the diamond-path schemes is low

while the computed results from both schemes were

nearly identical. Globally this inconsistency incurred by

the diamond-path scheme is small due in a large part by

the regularity of the Cartesian grids. The quadratic poly-

nomial based scheme guaranteed consistency, which

was also shown computationally in the discrete accu-

racy analysis, but yielded the most non-positive stencils,
which also made the quadratic scheme the least robust.

For arbitrarily cut cells, neither scheme was as robust as

would be desired, but the diamond-path scheme was

shown to be the more positive. An important conclusion
from this study is that the current viscous flux functions

for cell centered schemes rely heavily upon grid

smoothness and orthogonality to obtain accuracy and

positivity. For the Cartesian grids, these properties do

not hold at refinement boundaries, and are extremely

violated near cut ceils. This has negative implications

for the smoothness of aerodynamic parameters that rely
upon derivative quantities at walls, such as skin friction

and heat transfer, and can have a detrimental effect upon

convergence. Regardless of these comparatively nega-

tive findings, the approach can still prove to be useful,

and can give accurate, automatically gridded and adap-

tively-refined solutions of the Navier-Stokes equations

for low and moderate Reynolds number flows. The fol-

lowing computations illustrate adaptively refined soluo

tions using the Cartesian-cell approach with the

diamond path, linearity-preserving viscous flux func-
tion.



.IV.a Laminar, Driven Cavity Flow

The laminar flow inside a square, driven cavity is com-

puted and compared to the computed results of Ghia, et.
al. [18]. In [18], an incompressible formulation of the

Navier-Stokes equations were solved using an implicit

multi-grid method, where tabulated u- and v-velocity

data is supplied along the lines through the geometric

center of the cavity. To compare with these incompress-
ible results, the Mach number used here is taken to be

MIi d = 0.1. Two Reynolds numbers were computed
and compared to the tabulated results.

.IVa.1 Re=100

A uniform base grid of 1024 cells (32 by 32) is gener-
ated, and three levels of adaptive mesh refinement

beyond the base grid are obtained. Adaptive mesh

refinement improves the solution slightly, but the initial

solution is quite good. Figure 8 and Figure 9 show the

computed u- and v-velocity profiles along vertical and
horizontal lines through the geometric center of the cav-

ity for the diamond path scheme. Figure 10 shows the

final adapted grid and Figure 11 shows contours of u-

velocity. Particle paths, showing the primary and sec-
ondary vortices is shown in Figure 12.
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Re=100 Case

As seen in the adapted grid, the refinement strategy has

added points near the lid and has resolved the grid near
the upper comers, where there are singularities in the u-

velocity. There are secondary vortices situated in the

lower comers of the cavity: These vortices are not iso-

lated by the refinement strategy, which indicates that a

better strategy more suited for viscous flows might be

needed. Overall, though, the solution is predicted wello

7
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Figure 11 Refinement Level 3, u-
velocity Contours
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Figure 12 Particle Paths:

IVa.2 Re=400

This case is similar to the previous, although the Rey-

nolds number is now 400. A coarse base grid is gener-

ated, and three levels of adaptive mesh refinement are

performed beyond the base level. A comparison to the

computational data of Ghia[18] is shown for the u- and

v-velocities on lines through the geometric center in

Figure 13 to Figure 14.
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Figure 14 v-velocities on Horizontal Line
Through Geometric Center, Re=400

Here, the solution on the coarse, base grid is poor,

although the solution is improved through the adaptive

mesh refinement. Figure 15, Figure 16 and Figure 17

show the adapted grid, u-velocity contours and particle

paths in the cavity.
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Figure 15 Final Adapted Grid,
Re=400 Driven Cavity

Figure 17 Particle Paths, Re=400
Driven Cavity
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Figure 16 u-velocity Contours,
Final Adapted Grid, Re=400

Case

The solution obtained is good on the final grids, and the

mesh refinement is shown to have improved the solu-

tion, even though the refinement strategy has not been
derived with viscous flows in mind.

IV.b Laminar Flow Over a Backward

Facing Step

The laminar flow over a backwards facing step at two

Reynolds numbers is used to validate the solver. The

computed results are compared to the experimental data

of [2] at the laminar Reynolds numbers. A parabolic

velocity profile is specified at the inflow, and the exit

pressure is specified. This ensures that the proper pres-

sure gradient and mass flow is imposed on the flow.

IVb.1 Re=100

Adaptive mesh refinement is made for three levels of

refinement beyond the coarse, base grid. Figure 18

shows the grid and Figure 19 shows the effect of adap-

tive mesh refinement at a location corresponding to 2.55

step heights downstream of the step. Comparisons are
made at other locations of the flow in [12]: The results

compare equally well, and are not shown here. The

agreement with the experimental data is good, and the

adaptive mesh refinement improves the solution quality
with each refinement.
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Figure 18 Portion of Adapted Grid at
Refinement Level 3: Close-up Near Step
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Figure 19 Comparison of Adapted
Solutions at x/S=2.55. Re=100

0.8

IVb.2 Re=389

This case is identical to the previous case, but the Rey-

nolds number is Re=389. The computed velocity pro-

files through refinement at x/S=2.55 are shown in Figure

20. As before, the adaptive mesh refinement automati-

cally improves the solution quality, and the final refine-

ment level solution compares well with experiment.
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Figure 20 Comparison of
Adapted Solutions at X/S=2.55.

Re=389

IV.c Developing Laminar Flow over a

Flat Plate

The developing, laminar flow over a flat plate which is

aligned with the free-stream is computed and compared

to the theoretical solution. A uniform flow is imposed

ahead of the plate, and the flow is allowed to develop

along the plate. Conditions are set so that the Reynolds
number based on plate length is 10,000. The Mach num-

ber is taken to be M = 0.2 which eliminates the need

for any compressibility transformation to compare to

theory. When a poorly refined base grid is specified, the

coarser solutions are improved successively by the

adaptive mesh refinement. Figure 21 shows the close up

of a base grid near the leading edge where the initial res-

olution of the grid is made according to an estimated

normal velocity scale variation deduced from theory.

Figure 22 and Figure 23 show the effect of adaptive

mesh refinement upon the u- and v-velocity profiles

while Figure 24 shows the skin friction through refine-
ment.
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Figure 21 Close-up of Base Level Grid:
Length Scale Smoothing: Au = 0.2
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Figure 24 Skin Friction Through
Adaptive Mesh Refinement,

Diamond Path Scheme.

The smoothness of the skin friction in Figure 24 is due

to the smoothness of the grid, since the root cell of the
grid system has been located so that no cut cells are

introduced along the surface of the flat plate. In [12], the
plate is rotated 30 ° about the base axes and the identical

11
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flow is computed, bringing to light the effect of intro-

ducing cut cells along the plate boundary. The mean
flow quantifies are predicted well, but the skin friction is

shown to be very oscillatory. This appears to be
unavoidable with the current state of the art of the vis-

cous flux functions. There is no flux function that guar-
antees both positivity and accuracy for cell centered

schemes° Regardless of this finding, the mean flow

quantities are predicted well, and the approach can be
used to compute adaptively-refined solutions of the

Navier-Stokes equations about complex geometries, as
is indicated in the next case°

IV.d Laminar Flow Through a

Branched Duct with Cooling

Fins

To demonstrate the approach for complex geometries,

the flow in a stylized duct is computed. This duct geom-
etry corresponds to an experiment conducted at NASA

LeRC designed to simulate, in a simplified manner, the

flow in the cooling passages of a turbine blade [28]. The

calculations shown here in no way try to simulate the

experiment: The experimental conditions correspond to
a turbulent flow, while the calculations shown here are

laminar. A schematic of the geometry and flow is shown
in Figure 25.

::iiil;iiliilii;iZi

"Back SteI_ Primary

0

Inflow o o o
o o o _econaary
0 0 0

0 0

14 Pin

Cooling Fins

Figure 25 Schematic of Branched
Duct Geometry

A fully developed profile is introduced at the inflow, and

the flow is diverted into the primary passage by the

blockage introduced by the pin fins in the secondary

passage. Two different Reynolds numbers based on pin

diameter and maximum velocity in the fully developed

inflow profile were computed in [12]. The lower Rey-

nolds number results are only shown here for brevity,
where the Reynolds number based on maximum inflow

velocity and pin fin diameter is Re=25. Only one level

of adaptive-mesh refinement beyond the base grid level

was obtained, due to positivity problems in the rear stag-

nation region of one of the pin fins. The final adapted

grid and contours of total velocity are shown Figure 26
and Figure 27.
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Figure 26 Close up of Final Adapted Grid,
Lower Reynolds Number Case

Figure 27 Close up of Final Grid Level
Total-velocity Contours.

The basic flow features predicted here correspond to

those in the experiment, although some important fea-
tures are grossly under-resolved, such as the individual

pin-fin wakes. The primary passage separation and reat-

tachment along the splitter plate and the separation

anchored at the back step portion are both properly pre-

dicted, as well as the upstream influence of the pin

blockage upon the lower wall flow. Although many lev-

els of refinement were not achieved, the larger scale

flow features were adequately predicted and were

improved by the mesh refinement procedure.
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V. Conclusions

An adaptively-refined, finite-volume solution procedure

for the Euler and Navier-Stokes equations using a Carte-

sian, cell-based approach has been presented, demon-

strated and validated. The Cartesian, cell-based grid

generation procedure is automated, and is able to gener-

ate grids about complicated geometries without user

intervention. The grid generation strategy is based upon
the recursive, isotropic subdivision of a Cartesian cell

which encompasses the domain. Where the resulting

Cartesian cells span boundaries of the domain, polygo-

nal cells are "cut" out of the background Cartesian mesh

using a highly modified polygon clipping algorithm.

The hierarchy of the grid generation process is stored in

a binary tree, which provides a natural means of finding
cell-to-cell connectivity (via logical tree traversals) and

provides a straightforward means of adaptively refining

the grid (via tree branch growth and pruning). Extension

of this approach to the Navier-Stokes equations shows

promise by providing a means of obtaining automated,
adaptively-refined solutions upon domains where the

grid has also been automatically generated.

A finite-volume, upwind-based scheme has been
selected for treatment of the convective terms in the

Euler/Navier-Stokes equations and has been imple-
mented in the Cartesian, cell-based framework. Exten-

sion of the Cartesian approach for solving the Navier-

Stokes equations has necessitated a careful investigation
of candidate viscous flux formulations, which has been

summarized here. The two viscous flux formulations

that were investigated represent, respectively, a diver-

gence theorem (Green-Gauss) based reconstruction pro-
cedure, and a quadratic polynomial based reconstruction

procedure. Analysis and practice indicated that the

Green-Gauss based procedure, where data at the face

vertices was found in a linearity-preserving manner, was
adequate and was also the more robust of the two,

although neither could guarantee positivity on arbi-

trarily distorted meshes. This non-positivity reduced the
robustness of the solver, although useful results can still

often be obtained. The Green-Gauss based scheme,

commonly referred to as the diamond-path reconstruc-

tion using a linearity-preserving weighting, has been

used here to compute adaptively-refined solutions to a

variety of low and moderate Reynolds number flows.

Comparisons were made to accepted computational

results, to experimental data and to theory for a range of
flows, where the Cartesian, cell-based approach is

shown to accurately predict these flows.
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